466 research outputs found

    Model for monitoring of a charge qubit using a radio-frequency quantum point contact including experimental imperfections

    Full text link
    The extension of quantum trajectory theory to incorporate realistic imperfections in the measurement of solid-state qubits is important for quantum computation, particularly for the purposes of state preparation and error-correction as well as for readout of computations. Previously this has been achieved for low-frequency (dc) weak measurements. In this paper we extend realistic quantum trajectory theory to include radio frequency (rf) weak measurements where a low-transparency quantum point contact (QPC), coupled to a charge qubit, is used to damp a classical oscillator circuit. The resulting realistic quantum trajectory equation must be solved numerically. We present an analytical result for the limit of large dissipation within the oscillator (relative to the QPC), where the oscillator slaves to the qubit. The rf+dc mode of operation is considered. Here the QPC is biased (dc) as well as subjected to a small-amplitude sinusoidal carrier signal (rf). The rf+dc QPC is shown to be a low-efficiency charge-qubit detector, that may nevertheless be higher than the dc-QPC (which is subject to 1/f noise).Comment: 12 pages, 2 colour figures. v3 is published version (minor changes since v2

    A counterexample to well-posedness of entropy solutions to the compressible Euler system

    Get PDF
    We deal with entropy solutions to the Cauchy problem for the isentropic compressible Euler equations in the space-periodic case. In more than one space dimension, the methods developed by De Lellis-Sz\'ekelyhidi enable us to show failure of uniqueness on a finite time-interval for entropy solutions starting from any continuously differentiable initial density and suitably constructed bounded initial linear momenta.Comment: 29 page

    Thermodynamically Stable One-Component Metallic Quasicrystals

    Full text link
    Classical density-functional theory is employed to study finite-temperature trends in the relative stabilities of one-component quasicrystals interacting via effective metallic pair potentials derived from pseudopotential theory. Comparing the free energies of several periodic crystals and rational approximant models of quasicrystals over a range of pseudopotential parameters, thermodynamically stable quasicrystals are predicted for parameters approaching the limits of mechanical stability of the crystalline structures. The results support and significantly extend conclusions of previous ground-state lattice-sum studies.Comment: REVTeX, 13 pages + 2 figures, to appear, Europhys. Let

    Scanning Quantum Decoherence Microscopy

    Full text link
    The use of qubits as sensitive magnetometers has been studied theoretically and recent demonstrated experimentally. In this paper we propose a generalisation of this concept, where a scanning two-state quantum system is used to probe the subtle effects of decoherence (as well as its surrounding electromagnetic environment). Mapping both the Hamiltonian and decoherence properties of a qubit simultaneously, provides a unique image of the magnetic (or electric) field properties at the nanoscale. The resulting images are sensitive to the temporal as well as spatial variation in the fields created by the sample. As an example we theoretically study two applications of this technology; one from condensed matter physics, the other biophysics. The individual components required to realise the simplest version of this device (characterisation and measurement of qubits, nanoscale positioning) have already been demonstrated experimentally.Comment: 11 pages, 5 low quality (but arXiv friendly) image

    Dual-probe decoherence microscopy: Probing pockets of coherence in a decohering environment

    Get PDF
    We study the use of a pair of qubits as a decoherence probe of a non-trivial environment. This dual-probe configuration is modelled by three two-level-systems which are coupled in a chain in which the middle system represents an environmental two-level-system (TLS). This TLS resides within the environment of the qubits and therefore its coupling to perturbing fluctuations (i.e. its decoherence) is assumed much stronger than the decoherence acting on the probe qubits. We study the evolution of such a tripartite system including the appearance of a decoherence-free state (dark state) and non-Markovian behaviour. We find that all parameters of this TLS can be obtained from measurements of one of the probe qubits. Furthermore we show the advantages of two qubits in probing environments and the new dynamics imposed by a TLS which couples to two qubits at once.Comment: 29 pages, 10 figure

    Displacement field and elastic constants in non-ideal crystals

    Full text link
    In this work a periodic crystal with point defects is described in the framework of linear response theory for broken symmetry states using correlation functions and Zwanzig-Mori equations. The main results are microscopic expressions for the elastic constants and for the coarse-grained density, point-defect density, and displacement field, which are valid in real crystals, where vacancies and interstitials are present. The coarse-grained density field differs from the small wave vector limit of the microscopic density. In the long wavelength limit, we recover the phenomenological description of elasticity theory including the defect density.Comment: Phys Rev. B, in print (2010

    Disease Knowledge Transfer across Neurodegenerative Diseases

    Get PDF
    We introduce Disease Knowledge Transfer (DKT), a novel technique for transferring biomarker information between related neurodegenerative diseases. DKT infers robust multimodal biomarker trajectories in rare neurodegenerative diseases even when only limited, unimodal data is available, by transferring information from larger multimodal datasets from common neurodegenerative diseases. DKT is a joint-disease generative model of biomarker progressions, which exploits biomarker relationships that are shared across diseases. Our proposed method allows, for the first time, the estimation of plausible, multimodal biomarker trajectories in Posterior Cortical Atrophy (PCA), a rare neurodegenerative disease where only unimodal MRI data is available. For this we train DKT on a combined dataset containing subjects with two distinct diseases and sizes of data available: 1) a larger, multimodal typical AD (tAD) dataset from the TADPOLE Challenge, and 2) a smaller unimodal Posterior Cortical Atrophy (PCA) dataset from the Dementia Research Centre (DRC), for which only a limited number of Magnetic Resonance Imaging (MRI) scans are available. Although validation is challenging due to lack of data in PCA, we validate DKT on synthetic data and two patient datasets (TADPOLE and PCA cohorts), showing it can estimate the ground truth parameters in the simulation and predict unseen biomarkers on the two patient datasets. While we demonstrated DKT on Alzheimer's variants, we note DKT is generalisable to other forms of related neurodegenerative diseases. Source code for DKT is available online: https://github.com/mrazvan22/dkt.Comment: accepted at MICCAI 2019, 13 pages, 5 figures, 2 table

    Sensitivity and back-action in charge qubit measurements by a strongly coupled single-electron transistor

    Full text link
    We consider charge-qubit monitoring (continuous-in-time weak measurement) by a single-electron transistor (SET) operating in the sequential-tunneling regime. We show that commonly used master equations for this regime are not of the Lindblad form that is necessary and sufficient for guaranteeing valid physical states. In this paper we derive a Lindblad-form master equation and a corresponding quantum trajectory model for continuous measurement of the charge qubit by a SET. Our approach requires that the SET-qubit coupling be strong compared to the SET tunnelling rates. We present an analysis of the quality of the qubit measurement in this model (sensitivity versus back-action). Typically, the strong coupling when the SET island is occupied causes back-action on the qubit beyond the quantum back-action necessary for its sensitivity, and hence the conditioned qubit state is mixed. However, in one strongly coupled, asymmetric regime, the SET can approach the limit of an ideal detector with an almost pure conditioned state. We also quantify the quality of the SET using more traditional concepts such as the measurement time and decoherence time, which we have generalized so as to treat the strongly responding regime.Comment: About 11 pages, 6 figures. Changes in v2: we made general improvements to the manuscript including, but not limited to(!), the removal of one reference, and modification of the footnote

    The density functional theory of classical fluids revisited

    Full text link
    We reconsider the density functional theory of nonuniform classical fluids from the point of view of convex analysis. From the observation that the logarithm of the grand-partition function logΞ[ϕ]\log \Xi [\phi] is a convex functional of the external potential ϕ\phi it is shown that the Kohn-Sham free energy A[ρ]{\cal A}[\rho] is a convex functional of the density ρ\rho. logΞ[ϕ]\log \Xi [\phi] and A[ρ]{\cal A}[\rho] constitute a pair of Legendre transforms and each of these functionals can therefore be obtained as the solution of a variational principle. The convexity ensures the unicity of the solution in both cases. The variational principle which gives logΞ[ϕ]\log \Xi [\phi] as the maximum of a functional of ρ\rho is precisely that considered in the density functional theory while the dual principle, which gives A[ρ]{\cal A}[\rho] as the maximum of a functional of ϕ\phi seems to be a new result.Comment: 10 page
    corecore